Python3实战-PySpark+Azkaban 完成气象数据分析项目
Python3玩转Spark开发,Azkana让作业井然有序
本课程使用python3实战讲解了Spark核心功能组件,并结合调度爆款框架Azkaban,来对作业进行调度,最后以天气数据分析做为实战项目,让你学会对大数据进行处理与分析,让Python开发人员也能对Spark应用程序进行开发及调优。

〖课程目录〗:

  • 第1章 课程介绍 试看2 节 | 19分钟
  • 课程介绍
  • 收起列表
    • 视频:1-1 PySpark导学 (12:51)试看
    • 视频:1-2 OOTB环境演示 (05:29)
  • 第2章 实战环境搭建7 节 | 32分钟
  • 工欲善其事必先利其器,本章讲述JDK、Scala、Hadoop、Maven、Python3以及Spark源码编译及部署
  • 收起列表
    • 视频:2-1 -课程目录 (00:54)
    • 视频:2-2 -Java环境搭建 (02:14)
    • 视频:2-3 -Scala环境搭建 (01:50)
    • 视频:2-4 -Hadoop环境搭建 (09:29)
    • 视频:2-5 -Maven环境搭建 (02:24)
    • 视频:2-6 -Python3环境部署 (05:53)
    • 视频:2-7 -Spark源码编译及部署 (08:53)
  • 第3章 Spark Core核心RDD 试看12 节 | 108分钟
  • 本章详细讲解RDD是什么以及特性(面试常考)、Spark中两个核心类SparkContext和SparkConf、pyspark启动脚本分析、RDD的创建方式以及如何使用IDE开发Python Spark应用程序并提交到服务器上运行
  • 收起列表
    • 视频:3-1 -课程目录 (03:58)
    • 视频:3-2 -RDD是什么 (11:25)
    • 视频:3-3 -通过电影描述集群的强大之处 (04:47)
    • 视频:3-4 -RDD的五大特性 (12:00)
    • 视频:3-5 -RDD特性在源码中的体现 (12:38)试看
    • 视频:3-6 -图解RDD (04:31)
    • 视频:3-7 -SparkContext&SparkConf详解 (10:35)
    • 视频:3-8 -pyspark (11:49)
    • 视频:3-9 -RDD创建方式一 (08:23)
    • 视频:3-10 -RDD创建方式二 (12:18)
    • 视频:3-11 -使用IDE开发pyspark应用程序 (10:04)
    • 视频:3-12 -提交pyspark作业到服务器上运行 (05:20)
  • 第4章 Spark Core RDD编程16 节 | 92分钟
  • 本章将针对RDD中常用的算子进行详细案例讲解,并进行综合案例实战
  • 收起列表
    • 视频:4-1 -课程目录 (01:23)
    • 视频:4-2 -RDD常用操作 (09:23)
    • 视频:4-3 -map算子使用详解 (10:05)
    • 视频:4-4 -filter算子详解 (04:44)
    • 视频:4-5 -flatMap算子详解 (03:36)
    • 视频:4-6 -groupByKey算子详解 (05:54)
    • 视频:4-7 -reduceByKey算子详解 (04:37)
    • 视频:4-8 -sortByKey算子详解 (06:29)
    • 视频:4-9 -union算子使用详解 (02:26)
    • 视频:4-10 -distinct算子使用详解 (02:00)
    • 视频:4-11 -join算子详解 (05:34)
    • 视频:4-12 -action常用算子详解 (03:03)
    • 视频:4-13 -算子综合案例实战一词频统计 (13:57)
    • 视频:4-14 -算子综合案例实战之词频统计重构 (03:52)
    • 视频:4-15 -算子综合案例实战之TopN统计 (08:46)
    • 视频:4-16 -算子综合案例实战之平均数统计 (05:55)
  • 第5章 Spark运行模式5 节 | 50分钟
  • 本章将介绍Spark的几种运行模式,需要重点掌握on YARN模式
  • 收起列表
    • 视频:5-1 -课程目录 (01:50)
    • 视频:5-2 -local模式运行 (09:47)
    • 视频:5-3 -standalone模式环境搭建及pyspark运行 (11:52)
    • 视频:5-4 -standalone模式spark-submit运行 (05:28)
    • 视频:5-5 -yarn运行模式详解 (20:47)
  • 第6章 Spark Core进阶 试看13 节 | 98分钟
  • 本章将介绍Spark中的核心术语、运行架构、并对比Spark和MapReduce的概念区分、存储策略及选择方式、宽窄依赖及Shuffle
  • 收起列表
    • 视频:6-1 -课程目录 (04:02)
    • 视频:6-2 -Spark核心概念详解 (14:26)
    • 视频:6-3 -结合Spark UI详解Spark核心概念 (04:23)试看
    • 视频:6-4 -Spark运行架构及注意事项 (09:21)
    • 视频:6-5 -Spark和Hadoop重要概念区分 (05:32)
    • 视频:6-6 -Spark缓存的作用 (12:47)
    • 视频:6-7 -Spark缓存概述 (06:21)
    • 视频:6-8 -Spark缓存策略详解 (08:12)
    • 视频:6-9 -Spark缓存策略选择依据 (04:41)
    • 视频:6-10 -Spark Lineage机制 (05:00)
    • 视频:6-11 -Spark窄依赖和宽依赖 (08:10)
    • 视频:6-12 -Spark Shuffle概述 (01:54)
    • 视频:6-13 -图解RDD的shuffle以及依赖关系 (12:13)
  • 第7章 Spark Core调优6 节 | 40分钟
  • 本章将从Spark作业性能指标、序列化、内存管理、广播变量及数据本地化这几个方面来介绍Spark作业的调优
  • 收起列表
    • 视频:7-1 -课程目录 (02:05)
    • 视频:7-2 -优化之HistoryServer配置及使用 (15:32)
    • 视频:7-3 -优化之序列化 (05:48)
    • 视频:7-4 -优化之内存管理 (07:55)
    • 视频:7-5 -优化之广播变量 (02:51)
    • 视频:7-6 -优化之数据本地性 (05:32)
  • 第8章 Spark SQL9 节 | 73分钟
  • 本章将讲解Spark SQL的架构、DataFrame&Dataset、以及如何使用Python API来对DataFrame进行编程
  • 收起列表
    • 视频:8-1 -课程目录 (01:52)
    • 视频:8-2 -Spark SQL前世今生 (10:28)
    • 视频:8-3 -Spark SQL概述&错误认识纠正 (13:43)
    • 视频:8-4 -Spark SQL架构 (03:17)
    • 视频:8-5 -DataFrame&Dataset详解 (07:15)
    • 视频:8-6 -DataFrame API编程 (14:55)
    • 视频:8-7 -RDD与DataFrame互操作方法一 (09:37)
    • 视频:8-8 -RDD与DataFrame互操作方法二 (06:02)
    • 视频:8-9 -Spark SQL其他 (05:24)
  • 第9章 Spark Streaming8 节 | 62分钟
  • 本章将讲解Spark Streaming的核心概念、执行原理、以及如何Python API来对Spark Streaming进行编程
  • 收起列表
    • 视频:9-1 -课程目录 (01:35)
    • 视频:9-2 -Spark Streaming概述 (07:37)
    • 视频:9-3 -实时流处理框架对比 (04:24)
    • 视频:9-4 -Spark Streaming执行原理 (07:18)
    • 视频:9-5 -从词频统计案例来了解SparkStreaming (10:20)
    • 视频:9-6 -核心概念之StreamingContext (17:25)
    • 视频:9-7 -核心概念之DStream及常用操作 (06:20)
    • 视频:9-8 -SparkStreaming操作文件系统数据实战 (06:03)
  • 第10章 Azkaban基础篇10 节 | 81分钟
  • 本章将讲解Azkaban的特性、架构、运行模式、源码编译及部署、快速入门
  • 收起列表
    • 视频:10-1 Azkaban基础篇课程目录 (04:01)
    • 视频:10-2 -工作流概述 (08:51)
    • 视频:10-3 -工作流在大数据处理中的重要性 (11:29)
    • 视频:10-4 -常用调度框架介绍 (07:37)
    • 视频:10-5 -Azkaban概述及特性 (09:55)
    • 视频:10-6 -Azkaban架构 (07:34)
    • 视频:10-7 -Azkaban运行模式详解 (06:50)
    • 视频:10-8 -Azkaban源码编译 (08:56)
    • 视频:10-9 -Azkaban solo server环境部署 (09:29)
    • 视频:10-10 -Azkaban快速入门案例 (06:06)
  • 第11章 Azkaban实战篇7 节 | 49分钟
  • 本章将讲解如何使用Azkaban来完成HDFS、MapReduce、Hive作业的调度、定时作业调度以及邮件告警
  • 收起列表
    • 视频:11-1 -Azkaban实战篇课程目录 (02:59)
    • 视频:11-2 -依赖作业在Azkaban中的使用 (06:50)
    • 视频:11-3 -HDFS作业在Azkaban中的使用 (03:21)
    • 视频:11-4 -MapReduce作业在Azkaban中的使用 (12:28)
    • 视频:11-5 -Hive作业在Azkaban中的使用 (08:26)
    • 视频:11-6 -定时调度作业在Azkaban中的使用 (05:14)
    • 视频:11-7 -邮件告警及SLA在Azkaban中的使用 (08:43)
  • 第12章 Azkaban进阶篇10 节 | 73分钟
  • 本章将讲解Azkaban在生产上的部署、权限管理、Ajax API、Plugin、以及短信和调度框架的二次开发
  • 收起列表
    • 视频:12-1 -Azkaban进阶篇课程目录 (05:27)
    • 视频:12-2 -Two Server Mode之数据库准备工作 (07:06)
    • 视频:12-3 -Two Server Mode之AzkabanWebServer搭建 (14:41)
    • 视频:12-4 -Two Server Mode之AzkabanExecServer搭建 (04:52)
    • 视频:12-5 -Two Server Mode之使用实战 (07:25)
    • 视频:12-6 -Azkaban权限管理 (03:52)
    • 视频:12-7 -Azkaban中AJAX API使用 (14:46)
    • 视频:12-8 -Azkaban Plugin的使用 (04:45)
    • 视频:12-9 -Azkaban中短信告警改造思路 (03:25)
    • 视频:12-10 Azbakan在生产上使用的改造思路 (05:46)
  • 第13章 项目实战19 节 | 120分钟
  • 本章将讲解在构建大数据平台的技术选型、集群升级资源评估,并使用Spark对气象数据进行分析,讲分析结果写入ES,并通过Kibana进行统计结果的可视化展示
  • 收起列表
    • 视频:13-1 -课程目录 (01:24)
    • 视频:13-2 -大数据项目开发流程 (14:05)
    • 视频:13-3 -大数据企业级应用 (07:57)
    • 视频:13-4 -企业级大数据分析平台 (05:55)
    • 视频:13-5 -集群数据量预估 (05:01)
    • 视频:13-6 -集群机器规模&资源&作业规划 (04:58)
    • 视频:13-7 -项目需求 (06:22)
    • 视频:13-8 -数据加载成DataFrame并选出需要的列 (09:00)
    • 视频:13-9 -SparkSQL UDF函数开发 (07:57)
    • 视频:13-10 -每年Grade出现的次数统计 (02:51)
    • 视频:13-11 -Grade在每年中的占比统计 (04:59)
    • 视频:13-12 -ES部署及使用 (07:49)
    • 视频:13-13 -Kibana部署及使用 (04:55)
    • 视频:13-14 -将作业运行到YARN上 (05:31)
    • 视频:13-15 -统计分析结果写入ES测试 (11:27)
    • 视频:13-16 -统计分析结果入ES并通过Kibana图形化展示 (09:09)
    • 视频:13-17 -作业 (02:03)
    • 视频:13-18 -通过Azkaban调度整个流程 (04:29)
    • 视频:13-19 -课程总结及展望(重点关注) (03:53)

〖视频截图〗:

Python3实战Spark大数据分析及调度
Python3实战Spark大数据分析及调度
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。